Old enzyme helps algae combat photo-oxidative stress: Research

Old enzyme helps algae combat photo-oxidative stress: Research
Image source: Google

Washington, US: According to recent research, OYEs in microalgae utilise photosynthesis for energy.

"Our research group is among the first to investigate OYEs in algae," said Dr Stefanie Bohmer, lead author of the study. "Initially, we set out to determine whether these biocatalysts are also suitable for industrial processes. We were particularly interested in whether microalgae can use the energy of photosynthesis to drive the respective chemical reactions. This could help establish more environmentally friendly productions."

The researchers could indeed demonstrate this: a chemical molecule added to living algae cells was only converted at high rates in the light. "This result also indicated that the so-called en-reductases of the algae that are responsible for this conversion are linked to photosynthesis," says Bohmer. Therefore, the researchers from the Photobiotechnology working group investigated how an algal strain in which an OYE biocatalyst is defective adapts to strong light.

In cooperation with researchers from the University of Leipzig, the Bochum research team could indeed show that this algal strain is hardly able to dissipate excess light energy. "Photosynthetic organisms such as algae and plants must always maintain a balance between absorbed light energy and its conversion into chemical energy," explained Anja Hemschemeier, who led the study. "Otherwise, oxidative cell damage will occur if the light is too strong. Therefore, these organisms have sophisticated protective mechanisms in place to dissipate excess light energy, for example as heat."

In the microalgal strain lacking an OYE, the researchers detected hardly any of these protective mechanisms at all, and the strain accordingly exhibited oxidative damage. "We suspect that a certain molecule, which is normally converted by this biocatalyst in the algal cells, is essential for the photosynthetic balance," said Hemschemeier.

The research team now plans to get to the bottom of this. "Photosynthetic organisms provide the basis for our life. It's very important to understand how they adapt to stress, and we believe we've found another piece of the jigsaw here," concluded Hemschemeier.